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Understanding rainfall at a local scale is important for better adapting to its future changes. Using
physical simulations, however, to produce such high resolution projections is expensive. For the first time
we use diffusion models[1] (a state-of-the-art machine learning (ML) method for generative modelling)
to emulate a high-resolution, convection-permitting model (CPM) by downscaling general circulation
model (GCM) outputs. We apply this method to model high-resolution UK rainfall where climate change
is predicted to cause intensification of heavy rainfall extremes [2]. The ML model can complement
existing expensive CPM output with cheaper samples and also enable generating high-resolution samples
from other climate model datasets. The samples have realistic spatial structure, which previous statistical
approaches struggle to achieve.

Figure 1. Example samples conditioned on data from CPM (top) and GCM (bottom). The left column is
rainfall from the simulation of the conditioning input, the others are samples from the ML model. Note
the samples should represent the full range of plausible rainfall for the given low resolution conditions.

Deep generative ML models have been successfully applied to problems in weather and climate such
as short-term forecasting of sequences of rainfall radar fields [3] and downscaling [4]. Commonly these
use Generative Adversial Networks (GANs) but these can be difficult to train and their limitations imply
they might underestimate the probability of extreme events. Diffusion models instead model the full
data distribution and should not suffer these same problems. To our knowledge this work is the first
application of diffusion models in the domain of climate downscaling.

The ML-based emulator is a score-based generative model based on NCSN++[1], adapted to allow
conditional generation. It is trained on output from the Met Office CPM[5] because there is a direct
connection between the coarsened conditioning variables and the target CPM rainfall. We can then use
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(a) QQ plot of per-grid-box ML samples vs CPM
output from 10th to 99.99999th centiles.

(b) Normalized bias ( `𝑠𝑎𝑚𝑝𝑙𝑒𝑠−`𝐶𝑃𝑀

`𝐶𝑃𝑀
) of coarsened-

CPM-driven samples

Figure 2. Summary of ML samples based on by coarsened-CPM inputs.

either coarsened CPM output or low-resolution output from the Met Office HadGEM3 GCM[6] to make
predictions about 8.8km daily rainfall. 8.8km was chosen over the full 2.2km resolution of the CPM
at this early stage to cover a large area (England and Wales) while still providing a big improvement
in resolution for the available computational resources. We use relative vorticity and temperature at
multiple altitudes and mean sea-level pressure as our conditioning variables, all physical process-based
predictors of rainfall. To further improve the ML model we added location-specific parameters which tie
grid boxes to the underlying physical location. This allows the model to learn relevant features for each
location which effect rainfall that may not be available from the climate variable inputs alone.

Figure 1 shows example high resolution samples. The samples look realistic and cover a range that
plausibly includes the rainfall from the simulation. For each of the 4,320 days in the validation set, 3
samples were generated to capture the range of rainfall that is possible given coarsened CPM conditions.
The QQ plot in Figure 2a shows how well matched the marginal grid-box distributions of rainfall are
between the ML samples and target CPM output, out to at least as far as the 99.999999th centile. Figure
2b shows normalized bias of the ML model is no more than 10% in our domain. We have found that
different random initializations of the ML model can lead to variations of around 10% in the quantiles
on the validation set. The version selected is the first run version of the model before this variability had
been sampled.

We will discuss the challenges of selecting and applying the model trained on coarsened CPM
variables to GCM variables and present results about the method’s ability to reproduce the spatial and
temporal behaviour of rainfall and extreme events that are better represented in the CPM than the GCM
due to the CPM’s ability to model atmospheric convection.
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