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Problem statement

ML frameworks and data assimilation (DA) schemes: growing interest to
address challenges in Earth system modeling.
This includes both:

m the integration of learning-based components in DA schemes

m the design of DA-inspired learning-based schemes to address inverse
problems and uncertainty quantification (UQ) for dynamical processes

Using a data assimilation (DA) state space formulation, we aim at estimating
the hidden space

x = {xk(D)}

m y(Q2) = {y«(Qk)}: the partial and potentially noisy observational
dataset

m Q= {Qx} C D, the subdomain with observations and index k refers
to time .
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Current solutions

Covariance-based Kriging [Chiles and Delfiner, 2012], BLUE, Ol [Traon
et al., 1998]
and SPDE-based version [Lindgren et al., 2011]

X* = ):xyz;y1y = Q' Qyyy

B Model-based sequential data assimilation (DA), (En)KF [Evensen, 2009]
or variational assimilation, (3DVar, 4DVar) [Asch et al., 2016] with a
state-space formulation:

Xkr1 = Mgg1(Xk) + g
Yk = Hu(Xk) + £k

Hybrid methods to combine flow-dependent covariance matrix from EnKF
into variational schemes

Data-driven DA: Analog forecasting operator embedded in EnKF
[Tandeo et al., 2015], hybrid ML/DA synergy for the inference of
unresolved scale parametrizations [Brajard et al., 2021, Bocquet et al.,
2019, O’'Gorman and Dwyer, 2018, Rasp et al., 2018]
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4DVarNet

Joint learning of both prior B and solver Il backboned on variational data assimila-
tion scheme:

X' = argmin,J(x,y, ) = argmin,|[x - y|[% + 2/x — Mi(x)|?

For inverse problems with time-related processes, the minimization of functional 7o
usually involves an iterative gradient-based approach, denoted here as the solver

I}
X1 = x0) — @V, Jo (x(D,y,Q)

X spatio-temporal state: X, - - - , XT, Y the observations on 2 C D,
@ a trainable prior, ' a trainable solver to speed up the gradient descent.

Let denote by We r(x(9),y, Q) the output of the 4DVarNet learning scheme, then the
joint learning of operators {®, '} is stated as the minimization of a reconstruction
cost:

argmin £(x, ") s.t. X" = Vo r(x9y, Q)

with £ the MSE w.r.t Ground Truth.
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Observation System Simulation Experiment

m Ground truth dataset x: high-resolution
1/60° NATL60 configuration of the NEMO
(Nucleus for European Modeling of the
Ocean) model

m A10° x 10° GULFSTREAM region is
used with downgraded resolution to
1/20°, principally led by mesoscale
processes Figure: GULFSTREAM domain

m OSSE : pseudo-altimetric nadir and SWOT observational datasets y = {yx}
at time fx are generated by a realistic sub-sampling satellite constellations on
subdomain Q = {Q} of the grid.

Figure: From left to right: Ground Truth (SSH & Vssu) and pseudo-observations
(nadir & nadir+swot) on August 4, 2013
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Observational mask (nadir)
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Figure: GT, Obs, Ol and 4DVarNet
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4DVarNet: on-going and related works

El Sparse sampling operator

[1H(2) * (x — y)|| with [|[H(Z)[|1 <€
Multimodal observation:

X —y[[? +al|g «x — Fx2|?
Calibration operator

1H(y) — x|[?
Link with Gaussian Processes:

11
X* = argmin, 7 (X, Y, {2) . Z: N ‘K“anj q
= argmin, |l - y|[3 +x"ax £
507
where xTQx = ||x — ¢(x)||? and ¢ = éo.e
(1—9), and S is the square root of the =03
precision matrix. o4 i

0'34.0 35 30 25 20 15 1.0 05 00
165

Ol variational cost

/Solver: LSTM (20 updates) (mse loss)

= Prior Iver: LSTM (100 updates) (o loss)
riance / Solver: LSTM (20 updates) (mse loss) ~ ~=- Prior

ce / Solver: LSTM (100 updates) (o loss)

Figure: Asymptotic convergence of
4DVarNet to Ol (Gaussian case)
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Towards a stochastic 4DVarNet: the prior

distribution
Key idea: sample a simulation x>/ with same properties than the state
i.E [x%'(u)] = m(u) (1a)
ii.var [x5/(u)] = o2(u) (1b)
iii.C [x*'(u),x>'(u")] = C[x(u),x(u")] (1c)

How to do it? Draw (from catalog): easy, Generate (more difficult)

In real-world application, use simulation-based training on real datasets
works fine (see Learning from simulations for real data, Febvre et al. this
afternoon), then use the simulation catalog and analog strategy [Tandeo
et al., 2015] to draw samples from the prior distribution.

< Sample in the prior based

on analog strategy between
the observations and the
model-based catalog
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Towards a stochastic 4DVarNet: estimating
the posterior distribution

Posterior pdf: geostatistical-based conditioning of the simulation

x*,i — X* + {Xs’i _ x*,s,i} (2)

Properties (gaussian case):

i.E [x*/(u)] — E [x*(u)] (3a)
i.var [x*'(u)] — var [x*(u)] (3b)
n n
iii.C [x*(u), x*/(u")] = C(u,u') = > >~ Aa(u)Ap(u’)C(ua, ug)  (3c)
a=1pB=1
where a,3 = 1,--- , ndenote the observation index and A, are the optimal
weights

If x not Gaussian/linear, 4DVarNet may outperform Ol and traditional DA
[Beauchamp et al., 2022, Fablet et al., 2021].

m unbiased

m lower MSE w.r.t the ground truth, i.e. lower variance of its error

m Then, running N simulations conditioned by 4DVarNet — py )y, with both
improvements on the two first moments x* and P*
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Towards a stochastic 4DVarNet: estimating
the posterior distribution

We apply our ensemble-based 4DVarNet approach with 60 members on a 6 nadir
constellation in January 2017.

m Focus on a small bottom-left 50x50 pixels subdomain: the members are able
to reproduce different realistic patterns and small eddy structures

m SSH spread from 2016-12-31 to 2017-01-25 (every 5 days): observations
help to reduce UQ. Away from the observations, the uncertainty grows
quickly, not only based on the distance from the nadir altimeters but also
influenced by the SSH spatio-temporal dynamics.

Figure: Ensemble-based 4DVarNet (Left: variability amongst members; Right: spread
variations every 5 days)
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On-going and future works

El Generate samples from the prior distribution: one idea, use a GP
approximation of ¢ in 4DVarNet driven by stochastic PDEs:

LX=2

L a fractional differential operator (embedding advection, diffusion, etc.)
and z a white/colored noise

4DVarNet is trained with an augmented state formulation {x, ®} with ©
the (non-stationary) SPDE parameters

Joint learning of SPDE parametrization © and solvers I':

arg r(gip L(x,0%,x*) s.t. x* = Vg r(x?,y,Q)

with £ = ALy + Lo
L4 the MSE w.r.t Ground Truth (reconstruction cost)
L the negative log-likelihood —£(©*|x) (prior regularization cost).
Go to a full neural formulation with GAN or diffusion-based models
(the SPDE-based GP approximation is in fact a "linear" diffusion
model) for the prior distribution
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Take-home messages

4DVarNet: current state

m We can bridge DNN and variational models to solve inverse problem.
Key tools, unrolling of the gradient-step descent with a recurrent neural
network:

Observationsy

7] {7
| [V EA Vs
®m  ®

% Qe | B

Figure: Unrolling emulation of the gradient-descent
with R a recurrent neural network, typically a ConvLSTM

m Learning jointly neural (but also physical prior), observation models and
solvers

m Considerably ease the use of multimodal observations (computational
cost and trainable feature extraction operator)

m Stochastic implementation for now based on a post-processing of mean
state estimation, but training scheme embedding the UQ is on its way
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