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Problem statement
ML frameworks and data assimilation (DA) schemes: growing interest to
address challenges in Earth system modeling.
This includes both:

the integration of learning-based components in DA schemes
the design of DA-inspired learning-based schemes to address inverse
problems and uncertainty quantification (UQ) for dynamical processes

Problem

Using a data assimilation (DA) state space formulation, we aim at estimating
the hidden space

x = {xk (D)}

y(Ω) = {yk (Ωk )}: the partial and potentially noisy observational
dataset
Ω = {Ωk} ⊂ D, the subdomain with observations and index k refers
to time tk .
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Current solutions

1 Covariance-based Kriging [Chilès and Delfiner, 2012], BLUE, OI [Traon
et al., 1998]
and SPDE-based version [Lindgren et al., 2011]

x⋆ = ΣxyΣ
−1
yy y = −Q−1

xx Qxyy

2 Model-based sequential data assimilation (DA), (En)KF [Evensen, 2009]
or variational assimilation, (3DVar, 4DVar) [Asch et al., 2016] with a
state-space formulation:{

xk+1 = Mk+1(xk ) + ηk

yk = Hk (xk ) + εk

Hybrid methods to combine flow-dependent covariance matrix from EnKF
into variational schemes

3 Data-driven DA: Analog forecasting operator embedded in EnKF
[Tandeo et al., 2015], hybrid ML/DA synergy for the inference of
unresolved scale parametrizations [Brajard et al., 2021, Bocquet et al.,
2019, O’Gorman and Dwyer, 2018, Rasp et al., 2018]
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4DVarNet
4DVarNet

Joint learning of both prior ϕ and solver Γ backboned on variational data assimila-
tion scheme:

x⋆ = argminxJ (x,y, Ω) = argminx||x − y||2Ω + λ||x − ϕ (x)||2

For inverse problems with time-related processes, the minimization of functional JΦ

usually involves an iterative gradient-based approach, denoted here as the solver
Γ :

x(i+1) = x(i) − α∇xJΦ(x(i),y,Ω)

x spatio-temporal state: x0, · · · ,xT, y the observations on Ω ⊂ D,
ϕ a trainable prior, Γ a trainable solver to speed up the gradient descent.

Let denote by ΨΦ,Γ(x(0),y,Ω) the output of the 4DVarNet learning scheme, then the
joint learning of operators {Φ, Γ} is stated as the minimization of a reconstruction
cost:

arg min
Φ,Γ

L(x,x⋆) s.t. x⋆ = ΨΦ,Γ(x(0),y,Ω)

with L the MSE w.r.t Ground Truth.
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Observation System Simulation Experiment
Ground truth dataset x: high-resolution
1/60◦ NATL60 configuration of the NEMO
(Nucleus for European Modeling of the
Ocean) model

A 10◦ × 10◦ GULFSTREAM region is
used with downgraded resolution to
1/20◦, principally led by mesoscale
processes

NATL

GF
GF2

OSMOSIS

OSMOSIS2

Figure: GULFSTREAM domain

OSSE : pseudo-altimetric nadir and SWOT observational datasets y = {yk}
at time tk are generated by a realistic sub-sampling satellite constellations on
subdomain Ω = {Ωk} of the grid.

Figure: From left to right: Ground Truth (SSH & ∇SSH) and pseudo-observations
(nadir & nadir+swot) on August 4, 2013
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Figure: GT, Obs, OI and 4DVarNet
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4DVarNet: on-going and related works
1 Sparse sampling operator

||H(z) ∗ (x − y)|| with ||H(z)||1 < ϵ
2 Multimodal observation:

||x − y||2 + α||G ∗ x −F ∗ z||2
3 Calibration operator

||H(y)− x||2
4 Link with Gaussian Processes:

x⋆ = argminxJ (x,y, Ω)

= argminx||x − y||2Ω + xTQx

where xTQx = ||x − Φ(x)||2 and Φ =
(1−S), and S is the square root of the
precision matrix.

Figure: Asymptotic convergence of
4DVarNet to OI (Gaussian case)
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Towards a stochastic 4DVarNet: the prior
distribution

1 Key idea: sample a simulation xs,i with same properties than the state

i .E
[
xs,i(u)

]
= m(u) (1a)

ii .var
[
xs,i(u)

]
= σ2

x(u) (1b)

iii .C
[
xs,i(u),xs,i(u′)

]
= C [x(u),x(u′)] (1c)

How to do it? Draw (from catalog): easy, Generate (more difficult)

2 In real-world application, use simulation-based training on real datasets
works fine (see Learning from simulations for real data, Febvre et al. this
afternoon), then use the simulation catalog and analog strategy [Tandeo
et al., 2015] to draw samples from the prior distribution.

Sample in the prior based
on analog strategy between
the observations and the
model-based catalog
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Towards a stochastic 4DVarNet: estimating
the posterior distribution

1 Posterior pdf: geostatistical-based conditioning of the simulation

x⋆,i = x⋆ + {xs,i − x⋆,s,i} (2)

2 Properties (gaussian case):

i .E
[
x⋆,i(u)

]
→ E [x⋆(u)] (3a)

ii .var
[
x⋆,i(u)

]
→ var [x⋆(u)] (3b)

iii .C
[
x⋆,i(u),x⋆,i(u′)

]
→ C(u,u′)−

n∑
α=1

n∑
β=1

λα(u)λβ(u′)C(uα,uβ) (3c)

where α,β = 1, · · · ,n denote the observation index and λα are the optimal
weights

3 If x not Gaussian/linear, 4DVarNet may outperform OI and traditional DA
[Beauchamp et al., 2022, Fablet et al., 2021].

unbiased
lower MSE w.r.t the ground truth, i.e. lower variance of its error
Then, running N simulations conditioned by 4DVarNet → px|y with both
improvements on the two first moments x⋆ and P⋆
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Towards a stochastic 4DVarNet: estimating
the posterior distribution
We apply our ensemble-based 4DVarNet approach with 60 members on a 6 nadir
constellation in January 2017.

Focus on a small bottom-left 50×50 pixels subdomain: the members are able
to reproduce different realistic patterns and small eddy structures

SSH spread from 2016-12-31 to 2017-01-25 (every 5 days): observations
help to reduce UQ. Away from the observations, the uncertainty grows
quickly, not only based on the distance from the nadir altimeters but also
influenced by the SSH spatio-temporal dynamics.

Figure: Ensemble-based 4DVarNet (Left: variability amongst members; Right: spread
variations every 5 days)
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On-going and future works
1 Generate samples from the prior distribution: one idea, use a GP

approximation of ϕ in 4DVarNet driven by stochastic PDEs:

Lx = z

1 L a fractional differential operator (embedding advection, diffusion, etc.)
and z a white/colored noise

2 4DVarNet is trained with an augmented state formulation {x,Θ} with Θ
the (non-stationary) SPDE parameters

3 Joint learning of SPDE parametrization Θ and solvers Γ:

arg min
Θ,Γ

L(x,Θ⋆,x⋆) s.t. x⋆ = ΨΘ,Γ(x(0),y,Ω)

with L = λ1L1 + λ2L2
L1 the MSE w.r.t Ground Truth (reconstruction cost)
L2 the negative log-likelihood −L(Θ⋆|x) (prior regularization cost).

2 Go to a full neural formulation with GAN or diffusion-based models
(the SPDE-based GP approximation is in fact a "linear" diffusion
model) for the prior distribution
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Take-home messages
4DVarNet: current state

We can bridge DNN and variational models to solve inverse problem.
Key tools, unrolling of the gradient-step descent with a recurrent neural
network:

Figure: Unrolling emulation of the gradient-descent
with R a recurrent neural network, typically a ConvLSTM

Learning jointly neural (but also physical prior), observation models and
solvers

Considerably ease the use of multimodal observations (computational
cost and trainable feature extraction operator)

Stochastic implementation for now based on a post-processing of mean
state estimation, but training scheme embedding the UQ is on its way
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