Short-term forecasting of Typhoon rainfall with deep learning-based disaster monitoring model

Climate Informatics 2023

Doyi Kim, Yeji Choi, Seungheon Shin, Minseok Seo, and Hyun-Jin Jeong

SI Analytics

19, April, 2023

Background

01. Background

Background

4

- Weather radar detects and quantifies precipitation and severe weather
- It covers densely populated areas, but still insufficient to cover some regions and oceans

Different measurement techniques in a thick cloud [1]

A map of weather radar coverage [2]

01. Background

Goal

Accuracy Weather Forecasting without Radar System

Spatio-temporal limited detection \rightarrow Future Satellite video prediction Insufficient Radar system \rightarrow Proxy radar map from satellite images

Data and Method

Data

• Geo-KOMPSAT-2A (GK2A)

- Geostationary orbit satellite
- 2-minutes interval and 0.5 to 2 km spatial resolution
- 16 channels Visible (0.06 μm), Water vapor (6.04 μm), and Infrared (10.5 μm) channels
- KMA Weather Radar
 - 5-minutes interval and 0.5 km spatial resolution
- Test Case: Typhoon Hinnamnor
 - 2022/09/05 0100 to 0700 UTC

*KMA: Korean Meteorological Administration

517

Disaster Monitoring Model

- two-step process, consists of WR-Net and GeorAln
 - Rain forecasting over the next few hours for early warning

Disaster Monitoring Model

- Generative Adversarial Network for rain GeorAIn
 - Generate proxy radar reflectivity map using Pix2PixCC model ([6])
 - Inspector guides the generated image to be physically consistent with the real image

10

02:30 UTC August 21, 2021

[5] Yim et al. "Global Radar Precipitation Map Generation from Integrated Geostationary Satellite Products Using Deep Learning Approaches." (AMS, 2023). [6] Jeong, Hyun-Jin, et al. "Improved Al-generated Solar Farside Magnetograms by STEREO and SDO Data Sets and Their Release." The Astrophysical Journal Supplement Series 262.2 (2022): 50.

02. Data and Method

Disaster Monitoring Model

- Video Frame Prediction Network Warp and Refine Network (WR-Net)
 - Warping component for extracted optical flow
 - Refinement component for intensity changes of each pixel

51A

Disaster Monitoring Model

- two-step process, consists of WR-Net and GeorAln
 - Rain forecasting over the next few hours for early warning

Results

03. Results and Discussion

Results: Hinnamnor Case Study

- 1) Predicting satellite images from WR-Net
 - WR-Net prediction images preserve cloud locations and shapes compared to the original (GK2A) image
 - The predicted clouds are divided and dimmed by the reduced cloud amount (limitation of optical flow)

IR images from (a) GK2A and (b) WR-Net predicted result, and difference map between them.

Optical flow only detect the movement and intensity of objects, act as wind vector in weather task

03. Results and Discussion

Results: Hinnamnor Case Study

- Generating radar reflectivity by GeorAIn 2)
 - Shown a high correlation coefficient of over 0.8 at the future 3 hours and 0.75 at 5 hours
 - 'Pred' results tend to underestimate the radar reflectivity more than the 'Ori' results

reflectivity to rain rate by using the Z-R relationship: $Z = 200R^{1.6}$

The 2D histogram of the radar reflectivity from the GeorAln results

- 'ori radar reflectivity' is the result of original GK2A three channels (VIS, WV, and IR)
- 'pred radar reflectivity' is the result of two GK2A channels (VIS, WV) and one WR-Net predicted channel (PIR)

03. Results and Discussion

Results: Hinnamnor Case Study

- 3) Monitoring Typhoon rainfall by disaster monitoring model
 - Compared with (a) KMA radar, (d) Reanalysis data ERA5
 - (b) GeorAIn result and (c) GeorAIn + PIR from WR-Net
 - Our results show similar patterns with radar, but free of spatial constraints (masked areas in (a))
 - Our results are highly accurate in heavy rainfall area (red circle) and slightly underestimated in the moderate rainfall area (yellow box)

Conclusion

04. Conclusions

Conclusions

- We predict rainfall in Typhoon Hinnamnor case by our disaster monitoring model with geostationary satellite images
- We utilize the WR-Net results as the input data of the GeorAIn model to predict future rainfall
- The GeorAIn results show our model can predict the accurate timing, location, and intensity of heavy rain area
- We expect our results to help communicate preemptive and precise warning systems
- We plan to expand our disaster monitoring model to flood and storm cases on the global scale

Thank you for attention

doyikim@si-analytics.ai

www.si-analytics.ai

Appendix

- Improved video prediction model: IAM4VP [8] •
 - Solving the diminishing problem and generating new cloud cells •

Typhoon Forecasting with IAM4VP model

GT

IAM4VP + SR

GT

Appendix

• Replacing three channels with WR-Net

Comparison histograms of each channel. (a) is visible 0.06 μ m, (b) is water vapor, 6.04 μ m and (c) is infrared 10.5 μ m channels. The Blue bar means GK2A image and the Brown bar is WR-Net predicted image.

Qualitative results of each input combination. (a) KMA radar, (b) GK2A three channels, (c) two GK2A channels + one WR-Net result, and (d) three WR-Net results

Appendix

• Training information – WR-Net and GeorAlns

	WR-Net	GeorAln
Training data	GK2A 2020.08-2021.07, 2 min	GK2A 2019.08-2021.07.10 min
Base model	TV-LI algorithm (optical flow)/ U-Net basedVGGI6 (refinement)	Pix2PixCC model
Loss function	PSNR, SSIM	LSGAN, FM loss, CC loss
Optimizer	Adam	Adam
Learning Rate	le-4	0.0002

