
Environmental Data Science (2020), 4: 1–1
doi:10.1017/eds.2020.xx

RESEARCH ARTICLE

Clustering of causal graphs to explore drivers of river dis-
charge
Wiebke Günther1*, Peter Miersch2, Urmi Ninad3 and Jakob Runge1,3

1German Aerospace Center, Institute of Data Science, Jena, Germany
2Helmholtz Centre for Environmental Research, Department of Computational Hydrosystems, Leipzig, Germany
3Technische Universität Berlin, Faculty of Electrical Engineering and Computer Science, Berlin, Germany
*Corresponding author. Email: wiebke.guenther@dlr.de

Received: 01 February 2023; Revised: ; Accepted:

Keywords: causal inference; causal effect estimation; clustering; catchment hydrology

Abstract
This work aims to classify catchments through the lens of causal inference and cluster analysis. In particular, it
uses causal effects (CE) of meteorological variables on river discharge while only relying on easily obtainable
observational data. The proposed method combines time series causal discovery with CE estimation to develop
features for a subsequent clustering step. Several ways to customize and adapt the features to the problem at hand
are discussed. In an application example, the method is evaluated on 358 European river catchments. The found
clusters are analyzed using the causal mechanisms that drive them and their environmental attributes.

Impact Statement
This paper discusses how one can classify river catchments based on causal effects between temperature, pre-
cipitation and discharge, i.e. the volume of water that leaves the given area over a certain time. The proposed
method is applied to 358 European catchments.

1. Motivation
In hydrological research, basic classification of catchments, that is an area where all water drains to
a single outlet, is done through analyzing the response of discharge to precipitation input. Here, dis-
charge refers to the volume of water flowing through a river channel per time unit (Turnipseed and
Sauer 2010). However, discharge characteristics are highly heterogeneous, as they depend on catch-
ment characteristics like area, slope, and land cover. Furthermore, catchment behaviour is also driven
by regional climate and the interaction of hydrometeorological processes, for instance, snow melt, soil
moisture, and precipitation events. Historically, such classification or clustering of catchments has been
done using a carefully selected subset of their attributes (Wagener et al. 2007). However, many of these
attributes are correlated, making it difficult to select a minimal predictive set. Hydrological signatures
have also been used as a basis for clustering, leading to clusters that are partially close to ones based on
climate behaviour (Kuentz et al. 2017; Jehn et al. 2020).
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Figure 1. Geographic overview and distribution of European catchments characteristics. (a) Area, (b)
average elevation, (c) average slope, (d) forest cover..

In recent years, the importance of data driven analysis has been recognized (Peters-Lidard et al.
2017) and catchment classification has also been done using machine learning techniques (Jiang,
Bevacqua, and Zscheischler 2022).

However, we note that the tools of causal inference seem to be under-explored to derive relationships
between meteorological variables that can serve as a foundation for classifying river catchments. Causal
inference algorithms allow, under specific assumptions, to discover and quantify causal relationships
from observational data. Moreover, their outputs are inherently explainable by design. This makes
them especially suitable for the domain of Earth sciences, since here it is often infeasible to conduct
controlled experiments to arrive at causal conclusions (Runge, Bathiany, et al. 2019; Samarasinghe,
Deng, and Ebert-Uphoff 2020; Gnecco et al. 2019).

In our analysis, we investigate the impact of temperature and precipitation on observed discharge
in European catchments. See figure 1 for an overview of the considered catchments and their environ-
mental characteristics. We assume linear relationships between the variables, and employ the PCMCI
framework by Runge, Nowack, et al. 2019, in combination with expert knowledge, to identify causal
relationships. Based on the found causal graphs, we also quantify the causal effect between the variables
based on the path method (Wright 1934) and Pearl’s causal framework (Pearl et al. 2000) follow-
ing Runge, Petoukhov, et al. 2015. Subsequently, we use the estimated causal effects as features for
clustering using the k-means algorithm (Lloyd 1982).

In doing so, we show how methods from causal inference can improve our understanding of
discharge generating mechanisms.

2. Method
We want to explore differences in the causal structure of discharge and its drivers across Europe. Our
method relies on observations from multiple data sets that have been collected at different locations, i.e.
on data that is heterogeneous with respect to the environment by which it is influenced. In our appli-
cation setting, the considered data sets correspond to the catchments, where we observed temperature,
precipitation and discharge. Within each of the 𝑀 data sets (i.e. catchments), we have 𝑁 observational
time series, denoted by the vector X𝑚 where 𝑚 is the data set index, for variables that are the same
across data sets. An observation of variable 𝑖 at time point 𝑡 within data set 𝑚 is then denoted by 𝑋

𝑖,𝑚
𝑡 .

To ease notation, we suppress the data set index in the following. Our analysis comprises three main
steps, i.e.
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1. Estimate a causal graph for each data set (i.e. catchment) separately using the PCMCI-algorithm.
2. Extract features of the causal graphs that will be used in the subsequent clustering step. Here,

one is rather free in the choice of features, and we will discuss a few different options below. In
this work, we focus on features based on linear CE estimation. This step can also be seen as
selecting a mapping from the space of graphs into 𝑉 ⊂ R𝑑 with 𝑑 the dimension of the feature
space. For instance, 𝑑 could be the number of lagged CEs between specific variables 𝑋 𝑖 and 𝑋 𝑗 .
In this space 𝑉 we can use the Euclidean distance for clustering in the next step.

3. Finally, employ the k-means clustering algorithm to find graphs (that correspond to catchments)
with similar causal patterns.

2.1. Causal discovery
Interdependencies within a system of variables can be conveniently represented by graphical models,
where the variables are represented by the nodes of the graph and edges indicate dependence between
the respective nodes. Of specific interest to us are causal graphs, where an edge indicates a causal
relationship between two nodes. Here, we consider them to be directed acyclic graphs.

To be able to learn such causal graphs from observational data alone, we have to impose some
assumptions. In particular, we assume that the causal Markov condition, that is, the independence of
error terms driving each subprocess holds, as well as faithfulness which ensures that the graph includes
all conditional independencies that hold in the true underlying process. We also assume that all relevant
variables are included in the model. This is known as causal sufficiency. We also make the stationarity
assumption, i.e. that the causal relationships do not change over time. Furthermore, we assume that
there are no contemporaneous effects.

In this setting, we apply the PCMCI-algorithm to learn the time series graph within each data set.
PCMCI is a two-stage causal discovery algorithm based on the framework of constraint-based causal
discovery (Spirtes et al. 2000) that is suitable for time series. Its first stage, called PC1 is based on the
PC-stable algorithm that discovers relevant conditions for each of the 𝑁 variables by iterative inde-
pendence testing. These conditions are a superset of the true causal parents with high probability. In
stage two, the momentary conditional independence (MCI) test uses the conditions found in stage one
to infer a causal link 𝑋 𝑖

𝑡−𝜏 → 𝑋
𝑗
𝑡 , i.e. it tests 𝑋 𝑖

𝑡−𝜏 ⊥⊥ 𝑌𝑡 |𝑝𝑎(𝑌𝑡 ), 𝑝𝑎(𝑋 𝑖
𝑡−𝜏) where 𝑝𝑎(𝑋 𝑖

𝑡 ) denotes
the parent superset of 𝑋 𝑖

𝑡 found in the first step. Conditioning on the parents of the target 𝑝𝑎(𝑋 𝑖
𝑡 )

increases the effect size, and conditioning on 𝑝𝑎(𝑋 𝑖
𝑡−𝜏) helps to control for false-positives in the highly

autocorrelated time series case. For further details on PCMCI, refer to (Runge, Nowack, et al. 2019).

2.2. Feature extraction based on causal effect estimation
Now, we will give further detail on the feature extraction procedure within step 2. The CE of setting
𝑋 𝑖
𝑡−𝜏 to 𝑥∗ on 𝑋

𝑗
𝑡 is given by Ψ 𝑗𝑖 (𝜏) := 𝜕

𝜕𝑥∗
E[𝑋 𝑗

𝑡 | do(𝑋 𝑖
𝑡−𝜏) = 𝑥∗]. Note that the do-operator refers to

a hard intervention on the system of forcing the value of 𝑋 𝑖
𝑡−𝜏 to be 𝑥∗. Following Runge, Petoukhov,

et al. 2015, to estimate the CE from observational data, we fit a linear model of the following form,
where we only estimate the coefficients Φ𝑖 𝑗 that correspond to links in our causal graph (see step 1)

𝑋
𝑗
𝑡 =

𝑁−1∑︁
𝑖=0

𝜏max∑︁
𝜏=1

Φ 𝑗𝑖 (𝜏)𝑋 𝑖
𝑡−𝜏 + 𝜀𝑡 with Φ 𝑗𝑖 (𝜏) ≠ 0 only if 𝑋 𝑖

𝑡−𝜏 is a parent of 𝑋 𝑗
𝑡 . (1)

One straightforward way of using this approximation of the causal process for clustering, is to directly
consider the vector of path coefficients (𝚽𝑖 𝑗 (𝜏))𝜏=1,...,𝜏max ,𝑖∈𝑉, 𝑗∈𝑊 for subsets of variables 𝑉,𝑊 ⊂ X
as features. The path coefficient 𝚽 𝑗𝑖 (𝜏) is a standardized version of the corresponding Φ 𝑗𝑖 (𝜏) in (1)
and represents the change in the expectation of 𝑋 𝑗

𝑡 (in units of its standard deviation) induced by raising
𝑋 𝑖
𝑡−𝜏 by 1 standard deviation, while keeping all other parents constant. It therefore quantifies the direct
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Figure 2. Illustration of total causal effect estimation in a time series graph for 𝜏 = 2. The CE Ψ 𝑗𝑖 (2)
between 𝑋1

𝑡−2 =: 𝑋 and 𝑋2
𝑡 =: 𝑌 is computed by summing over the products of path coefficients (link

labels) along each path, i.e. Ψ21 (2) = Φ1,1 (1)Φ2,1 (1) +Φ2,1 (1)Φ2,2 (1).

effect of 𝑋 𝑖
𝑡−𝜏 on 𝑋

𝑗
𝑡 . One potential problem with this approach could be that the frequently (for every

not directly linked pair of nodes) appearing zero-values could dominate or skew the clustering results.
Graphs with the same non-parental relationships would be in the same cluster even though they exhibit
very different behaviour in the present links.

Therefore, it might be preferable to use the lagged CEs of the variables in 𝑉 onto the variables in 𝑊

instead. The matrix 𝚿(𝜏) of the standardized CEs between all variables for time lag 𝜏 can be iteratively
computed based on the standardized path coefficients 𝚽(𝜏), as the entry Ψ 𝑗𝑖 (𝜏) corresponds to the
sum over the products of path coefficients along all path between 𝑋 𝑖

𝑡−𝜏 and 𝑋
𝑗
𝑡 , see also figure 2. If we

want to consider a large maximal time lag 𝜏max, using (𝚿(𝜏))𝜏=1,...,𝜏max will give us a high-dimensional
feature space.

However, we can reduce its dimension by using aggregated measures. Here, there are various ways
in which aggregation is possible. The lagged CEs could be aggregated over the number of variables, or
by aggregating in the direction of the lags, e.g. by averaging

1
𝜏max

𝜏max∑︁
𝜏=1

𝚿(𝜏),

or both, as is done in calculating the average causal effect (ACE) or average causal susceptibility
(ACS). Please refer to Runge, Petoukhov, et al. 2015 for the formulas. Note that many different ways
of aggregation besides averaging are possible and have to be carefully evaluated within each applica-
tion context. Additional to averaging, we have included results for maximal lagged CEs, i.e. using the
features (𝑚𝑎𝑥𝜏 (𝚿ij (𝜏)))𝑖, 𝑗=1,...,𝑁 , in the figure 3.

3. Application
Now, we apply our method to the problem of classifying European catchments in terms of their causal
interactions between temperature, precipitation and discharge.

3.1. Data and setup
In this study, we consider 358 gauged catchments across Europe selected based on data avail-
ability of daily observational discharge, meteorological observations, watershed boundaries, and
morphological catchment characteristics for the study period from 1950 to 2021. Daily observational
discharge and watershed boundaries were used from the Global Runoff Data Centre (GRDC) dataset
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(https://www.bafg.de/GRDC, accessed: 21. July 2022). Using the observational 0.1◦ daily gridded E-
OBS dataset (version 26e, Cornes et al. 2018), catchment averaged precipitation and mean surface
temperature time series were derived using area-weighted averages of the gird cells within the catch-
ments’ boundary. For analysis of the clusters, catchment averaged slope and altitude were derived from
the USGS digital elevation model (Earth Resources Observation And Science (EROS) Center 2017),
land cover (impervious, forest, pervious) from the European Space Agency GlobCover (Arino et al.
2012). Deriving the morphological variables from gridded data products was done to allow for compar-
ison to future studies including process based hydrological models, therefore we restricted our study to
catchments where this data is available. We furthermore limit our study to catchments with a minimum
of 30 years of continuous discharge records within the study period to ensure sufficient data for our
causal inference approach. The catchment areas range between 16 and 10, 000 𝑘𝑚2 - larger catchments,
with increasing importance of spatial heterogeneity on discharge generation, were omitted. Overall, the
selected catchments encompass a large variety of locations, areas, average altitudes and morphologies,
with a cumulation in Great Britain and Ireland due to the availability of watershed boundaries in those
regions (fig. 1).

The implementation of our method is based on the Tigramite-package (https://github.com/
jakobrunge/tigramite/tree/master). For the causal discovery step (step 1 above), we use the PCMCI-
algorithm. We assume a linear relationship between the variables and therefore use the partial
correlation conditional independence test with a 0.05 significance level in the PCMCI-algorithm. We
also provide the general knowledge that discharge cannot cause either temperature nor precipitation
to the causal discovery method. We look for causal relationships up to 30 time steps in the past, i.e.
𝜏max = 30. Any time slices of samples with missing values are discarded. For step 2, we use the
functionality provided in the LinearMediation class of Tigramite. Within step 3, we use the scipy-
implementation of the 𝑘-means algorithm with 4 cluster centers. Results for 3 and 5 cluster centers
are provided in the supplement. The choice of this hyperparameter was based on a combination of
the Elbow method and the silhouette score (Kaufman and Rousseeuw 2009). The elbow method cor-
responds to finding the point after which the sudden drop in average distance from the centroid slows
down, see Teoh and Rong 2022 for details. The silhouette score provides a more quantitative measure
of how similar and separated the found clusters are. We plotted the average distance from the centroid,
the silhouette score, and its average, respectively, over the number of cluster centers. These plots can
be found in the supplement. The results vary slightly over the different features that we used as a basis
for the clustering. However, generally speaking, 4 cluster centers seems to be a good choice that also
leads to clusters that are informative and of roughly the same size.

3.2. Results
As one would expect, we find slightly different clusters depending on the causal aspect of the system we
are focusing on during the feature extraction phase of our method. We present results for a few different
feature choices in figure 3, more can be found in the supplement in figure 10. However, some metrics
also yield very similar results. We find only minor variation between the clusters for ACE and ACS.
Only considering the CE of precipitation on discharge gives us very similar clusters to considering the
relationships between all variables. Moreover, clusters based on joint CE are almost identical to only
considering the maximal CE over all lags for each variable pair.

Figure 10 in the supplement also illustrates the results for an increasing number of clusters. We
observe that the clusters tend to become regionally very scattered as the number of clusters grows. This
effect is especially apparent in middle and Western Europe. This is possibly due to the high spatial
variability in the European climate and topography.

https://github.com/jakobrunge/tigramite/tree/master
https://github.com/jakobrunge/tigramite/tree/master
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Figure 3. Cluster results for different choices of features. For a brief explanation of these, and other,
feature extraction methods see section 2.2. In the following 𝑋1 denotes temperature, 𝑋2 precipitation
and 𝑋3 discharge. The features correspond to (a) average lagged CE of 𝑋1 on 𝑋3, (b) average lagged
CE of 𝑋2 on 𝑋3, (c) average lagged CE of 𝑋 𝑖 on 𝑋 𝑗 for all 𝑖 ≠ 𝑗 , (d) maximal lagged CE of 𝑋 𝑖 on 𝑋 𝑗

for all 𝑖 ≠ 𝑗 , (e) path coefficients, (f) ACE of 𝑋 𝑖 on the system for all 𝑖.

3.3. Distinct causal behaviour
The time series graphs that are discovered in step 1 of our method do not differ much across catchments
in terms of skeleton, i.e. the graph without orientations, and link direction, see figure 9 in the supple-
ment. This is to be expected, since we provided the causal discovery algorithm with substantial expert
knowledge. Therefore, we get more regionally varying clusters if we take the variations in strength of
the links, or, in other words, of the value of the path coefficients, into account. This behaviour is visi-
ble in figure 10 in the supplement. In this section, we want to investigate the features that we used for
clustering further by having a closer look at the distribution of each component of the feature vectors
within each cluster. This will allow us to associate the observed clusters with a specific causal pattern.
As an example, we will focus on the average joint CE and some variants of it.

In figure 4, we observe that for one dimensional feature-spaces, we can directly see that the clusters
correspond to a specific range of the feature values. This is shown in the right column of figure 4 for
the one-dimensional features average lagged CE of temperature on discharge, and average lagged effect
of precipitation on discharge, respectively. For instance, in the yellow cluster, we see a strong average
CE of temperature on discharge. As can be expected, this cluster has the lowest CE of precipitation on
discharge. Interestingly, we find that this cluster is also associated with a specific European region, see
figure 3.

Now, we look at similar plots for the case where we used the four dimensional feature vector of the
average joint CE of temperature on precipitation, temperature on discharge, precipitation on tempera-
ture, and precipitation on discharge for clustering (left and middle column in figure 4). Here, we see
that the fourth component almost exactly separates according to the clusters. We suspect that it is domi-
nating the clustering, since the CEs between precipitation and temperature are very low in comparison.
More plots can be found in the supplement.

3.4. Distribution of catchment attributes within clusters
We are also interested in analysing the distribution of environmental variables within each of the found
clusters. We illustrate this using boxplots in figure 5. Also, note that the environmental attributes tend
to be strongly correlated. For instance, steeper slope generally corresponds to higher altitude. In figures
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Figure 4. Histogram of one-dimensional CE-based features (right column) in comparison to clustering
based on feature vectors that include the average joint CE of temperature on precipitation, temperature
on discharge, precipitation on temperature, and precipitation on discharge (left and middle column).
For instance, the plot in the right upper corner shows the frequency of values of the average lagged CE
of temperature on discharge within the different clusters. One can see that in the catchments of cluster
1 (blue) the average lagged CE of temperature on discharge is relatively low in comparison to the other
clusters. Colors correspond to the clusters illustrated in figure 3.

3 and 5, general patterns are also visible across all different choices of features, e.g. strong differences
in mean altitude between one or two of the found clusters and the remaining ones. We can summarize
the differences and similarities with respect to the attributes in the following way:

• 1. cluster: low altitude, small catchments, western/middle Europe
• 2. cluster: low to medium altitude, small, western/middle Europe
• 3. cluster: low to medium altitude, larger area, western/middle Europe
• 4. cluster: high altitude, with larger area: seems to be alps, Scandinavian mountains

Some of the clusters seem to be strongly related to a specific region, e.g. in terms of effect of precip-
itation on discharge we observe a very clear regional cluster in Ireland. However, it is hard to interpret
without further domain knowledge. Moreover, the results could be skewed by the choice of catchments.
A large proportion of the catchments are located in Great Britain and Ireland since here watershed
boundaries are readily available. This was a limiting factor in our catchment selection because we
wanted to be able to infer the catchment size. How this problem can be alleviated in future work is
further discussed in the next section.

4. Discussion
In principle, our method is applicable in any situation where there are multiple data sets containing
observations of the same variables. This makes our method applicable to a wide range of problems and
research areas, not even limited to the domain of Earth science.

Of course, in practice the availability and quality of data are limiting factors. Therefore, an analogous
analysis can be conducted in regions with good public data availability, like North America, whereas it
would be more challenging in regions with a lower converage by weather and gauging stations.
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Figure 5. Distribution of catchment attributes within each cluster. The attributes are slope in degrees
times 10, average altitude in m above sea level, area in 𝑘𝑚2, proportion of basin covered by forest,
proportion of basin covered by impervious surfaces, mean annual rain volume in 100𝑘𝑚3. Colors cor-
respond to the clusters illustrated in figure 3. In the following 𝑋1 denotes temperature, 𝑋2 precipitation
and 𝑋3 discharge. The features correspond to (a) average lagged CE of 𝑋1 on 𝑋3, (b) average lagged
CE of 𝑋2 on 𝑋3, (c) average lagged CE of 𝑋 𝑖 on 𝑋 𝑗 for all 𝑖 ≠ 𝑗 , (d) maximal lagged CE of 𝑋 𝑖 on 𝑋 𝑗

for all 𝑖 ≠ 𝑗 , (e) path coefficients, (f) ACE of 𝑋 𝑖 on the system for all 𝑖.

Also, construction of geographically averaged timeseries and associated environmental attributes
might not be as clean cut as in our application, where the catchment boundaries provide a natural
distinction between different data regions. In other questions relevant to the field of Earth Science,
the regions to average over might be more arbitrary. This essentially introduces more hyperparameters
into the problem. Another potential problem is an insufficient amount of data. For instance, if one
is interested in extreme events, like the flood generating process instead of the discharge generating
process, then there are probably too few events to obtain stable causal discovery and clustering results.

There are still many avenues open for future work. The main next step that we want to take is to only
focus on peak discharge events and to see how the drivers of extreme events differ from the baseline
behaviour of normal fluctuations in discharge. Another major point that we want to explore further is
the influence of climate change on the system. So far we have assumed stationarity of the time series
but this assumption is violated in a warming climate.

Furthermore, the effect of including more variables into our model has to be investigated. In other
words, effects of the possible violation of the underlying causal sufficiency assumption within the
PCMCI-algorithm has to be explored.

Also, further analysis has to be done to distinguish the clusters more, especially cluster 1 and 2. In
particular, the imbalance in the dataset of most clusters being located in Great Britain or Ireland has to
be addressed. The reason for this is that here a lot of clusters with watershed boundaries are available.
However, following the approach presented in Xie et al. 2022, it is possible to infer the watershed
boundaries for many more clusters across Europe making them suitable for our analysis. Moreover, the
European climate has a high spatial variation that depends on far more factors than have been analysed
by us so far.
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5. Conclusion
In this work, we presented how tools from causal discovery and effect estimation can be combined
with clustering techniques. The presented approach is very customizable and thus suitable for a wide
variety of problems and domains. In an application example, we have explored how causal drivers of
discharge, specifically the strengths of their causal effects, differ across Europe. We saw how the causal
inference methods allow us to find clusters of catchments that can guide domain experts in developing
and evaluating hypothesis based on observational data, and how these clusters are affected by different
choices in designing the features.
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A. Appendix. Additional Plots

Figure 6. Average distance to cluster center for different numbers of cluster centers, the optimal choice
for the number of cluster centers is where the sudden drop starts to slow down. Here, this would be
around 4 cluster centers.

Figure 7. Average silhouette score for different numbers of cluster centers, the optimal choice for the
number of cluster centers is where the silhouette score is maximized.
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Figure 8. Silhouette scores for different numbers of cluster centers, the optimal choice for the number
of cluster centers is where the silhouette score of all the clusters is above the average score of the data
set (indicated by dotted red line). Furthermore all the clusters should be roughly equal in size..

Figure 9. Number of links across all graphs up to a maximal time lag of 15.
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Figure 10. Cluster results for various different choices of CE-based and other features for 3, 4, or 5
clusters.
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Figure 11. Distribution of various attributes within each found cluster results for different choices of
CE-based and other features for 3, 4, as well as 5 clusters.
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Figure 12. Distribution of features within each cluster for 3 clusters.
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Figure 13. Distribution of features within each cluster for 4 clusters.
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Figure 14. Distribution of features within each cluster for 5 clusters.
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