
Systematically Generating Hierarchies of Machine-Learning Models, from
Equation Discovery to Deep Neural Networks

While the added value of machine learning (ML) for weather and climate applications is measurable, it remains chal-
lenging to explain, especially for large deep learning models. Inspired by climate model hierarchies, which use dynamical
models of increasing complexity to help connect our fundamental understanding of the Earth system with operational
predictions, we ask:

Given a climate process for which we have reliable data, how can we systematically generate a hierarchy of ML models,
from simple analytic equations to complex neural networks?

To address this question, we choose two atmospheric science problems for which we have physically-based, analytic
models with just a few tunable parameters, and deep learning algorithms whose performance was already established in
previous work: Cloud cover parameterization and shortwave radiative transfer emulation. In each case, we formalize the
ML-based hierarchy by working in a well-defined, two-dimensional plane: Complexity versus Performance. We choose the
number of trainable parameters as a simple metric for complexity, while performance is defined using a single regression
metric (e.g., the mean-squared error) calculated for the same outputs on a common validation dataset.

During this presentation, we will demonstrate how to use our data-driven hierarchies for two purposes: (1) Data–
driven model development; and (2) process understanding. First, each ML model of the hierarchy occupies a well-
defined (complexity, performance) position as they use the same performance metric. Models that maximize perfor-
mance for a given complexity unambiguously define a Pareto frontier in (complexity) × (performance) space and can
be deemed optimal. Second, optimal models on the Pareto frontier can be compared to reveal which added pro-
cess/nonlinearity/regime/connectivity/etc. leads to the biggest increase in performance for a given complexity, which
facilitates process understanding. For example, using sequential feature selection on simple polynomial fits, we underline
the nonlinear relationship between condensate mixing ratios and cloud cover. Using a specialized type of convolutional
neural network (U-net++) to emulate shortwave radiative heating, we can mostly overcome the biases of simpler models
of shortwave radiation (one-stream, linear, multilayer perceptron, convolutional neural network), notably in the presence
of one or more cloud layers.

To show its versatility, we apply our framework to the data-driven discovery of analytic models, which are interpretable
by construction. Applying sequential feature selection to neural network models of cloud cover, we identify the five most
informative features, and use them as inputs to genetic algorithms. These genetic algorithms automatically generate
hundreds of candidate equations, which can be filtered using physical constraints and ranked using our (complexity) ×
(performance) space. Our best candidate is interpretable, achieving a coefficient of determination close to 0.95 with only
13 trainable parameters. It beats all neural networks using three features or less, the widely-used Sundqvist scheme by
capturing how cloud condensate mixing ratio nonlinearly affects cloud fraction, and the Xu-Randall scheme by describing
how temperature decreases cloud cover.

In summary, we can systematically build hierarchies of Pareto-optimal ML models to better understand their added
value. By cleanly comparing these ML models to existing schemes, and promoting process understanding by hierarchically
unveiling system complexity, we hope to improve the trustworthiness of ML models for weather and climate applications.
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