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Motivation: Added value of ML for weather/climate is 
measurable (↓RMSE), but challenging to understand

See: Kurth et al. (2022), Keisler (2022), Pathak et al. (2022), Bi et al. (2022), Lam et al. (2022)



Analogy: Climate Model Hierarchies connect our
fundamental understanding with model prediction
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Source: Bony et al. (2013); 
See: Jeevanjee et al. (2017), 

Balaji (2022)



Idea: Promoting model hierarchies for ML models

Source: Bony et al. (2013), xkcd; See: Jeevanjee et al. (2017), Balaji (2022)
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Given a climate process for which we have reliable data,
how can we systematically generate hierarchy of ML models?

Source: Bony et al. (2013), xkcd; See: Jeevanjee et al. (2017), Balaji (2022)
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Outline: Generate Hierarchy for two atmospheric 
processes relevant for climate/weather predictions

2. Shortwave Radiative
Transfer Emulation

1. Cloud Fraction 
Parameterization

Applications: 1) Data-driven model development, 2) Process understanding
Methods: 1) Sequential Feature Selection, 2) Pareto Optimality



Movie from: Monsoon IV (Olbinski, 2017)



1. Improving Cloud Cover Parameterization in 
ICON (Unified German NWP/climate model)

Source: Grundner, Beucler et al. (2022), Giorgetta et al. (2022), Stevens et al. (2019)

Motivation: Reduce cloud-related biases for climate projections
Data: 2.5km-res, 59-layer, global storm-resolving ICON runs (DYAMOND) 

Original Cloud Cover 80km-res “High-fidelity” Cl. Cov.

Coarse 
Graining



Neural Network 
Estimate

Neural Nets have root-mean squared errors < 7%

Reference
(Coarse-Grained 
High-resolution 
simulation)



Model Complexity

Model 
Error

Number of trainable parameters

Mean
Squared 

Error

Analogy: Work in a well-defined (Complexity,Performance) plane



Improving Cloud Cover Parameterization using High-Res. ICON Data



Improving Cloud Cover Parameterization using High-Res. ICON Data

Calibrated 
Sundqvist 
Scheme
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Improving Cloud Cover Parameterization using High-Res. ICON Data
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How to jointly minimize error and complexity?

8

Goal



Sequential Feature Selection helps build a hierarchy of ML models 
by progressively increasing the number of inputs



Elbow = Compromise between complexity and performance 

Tool 1: Sequential Feature Selection helps build a hierarchy of ML 
models by progressively increasing the number of inputs



Simple linear models are more appropriate than 
Sundqvist scheme to parameterize cloud fraction
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Tool 2: Increasing model complexity draws a Pareto frontier
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Application 1: Data-Driven Model Development 
Goal = Pareto optimality

Goal
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Application 2: Process Understanding
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Why does increased complexity improve performance?
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Concentration of all water species & temperature 
help accurately predict cloud fraction
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Condensates nonlinearly related to cloud fraction



Nonlinearities are crucial, even for relative humidity…

Polynomials with regime 
split for RH=0.51



…explaining the success of a simple exponential scheme for cloud cover

See: Xu and Randall (1996)



And guiding the discovery of new equations for cloud cover

See: Cranmer (2020), Cranmer et al. (2020)



And guiding the discovery of new equations for cloud cover
Example of transparent machine learning

See: Cranmer (2020), Cranmer et al. (2020)



Application 2: Process Understanding
Pareto frontier hierarchically unveils system complexity



2. Accelerating Shortwave Radiative Transfer for 
NWP by emulating high-fidelity rad. transfer model

Source: Lagerquist et al. (2021)



2. Accelerating Shortwave Radiative Transfer for 
NWP by emulating high-fidelity rad. transfer model

Motivation: Even correlated-k models (RRTM) are too slow for NWP
Data: Input derived from the Rapid Refresh model, then fed to RRTM

Source: Lagerquist et al. (2021), Krasnopolsky et al. (2010, 2020), Benjamin et al. (2016), Mlawer et al. (1997)



2. Accelerating Shortwave Radiative Transfer for 
NWP by emulating high-fidelity rad. transfer model

Motivation: Even correlated-k models (RRTM) are too slow for NWP
Data: Input derived from the Rapid Refresh model, then fed to RRTM

Source: Lagerquist et al. (2021), Krasnopolsky et al. (2010, 2020), Benjamin et al. (2016), Mlawer et al. (1997), NASA Sci.
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One-stream & quadratic models are Pareto-optimal

+0.86



Parsimony Principle: “Models with less parameters tend 
to generalize better to out-of-distribution samples” 

Train

Test



Tip: Explore various definitions of performance & complexity  

Data Source: GFS (not RAP), See: AMS Talk 1A.5 by Ryan Lagerquist et al., Ukkonen (2022)

Linear Dense CNN UNet Unet++

1.14 K/d 0.68 K/d 2.22 K/d 0.20 K/d 0.14 K/d



We can systematically build hierarchies of 
ML models to better understand their added value 

Applications:
1. Guide data-driven model development by jointly minimizing error and 

complexity in a well-defined plane, indicating “Pareto-optimal” models
2. Further process understanding by hierarchically unveiling system 

complexity (key features/nonlinearity/space-time connectivity) by 
comparing models & investigating error statistics along Pareto frontier

3. Anticipate generalization to out-of-distribution (parsimony principle)

Advantages:
• Cleanly comparing existing schemes to powerful data-driven models
• Developing data-driven models directly applicable to NWP/climate
• Improving trustworthiness of ML models via hierarchical understanding*
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