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Motivation: Added value of ML for weather/climate is

measurable (J RMSE), but challenging to understand
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ABSTRACT

FourCastNet, short for Fourier Fore Casring Neural Nerwork, is a global data-driven weather fore-

casting model that provides accurate short to medium-ras
FourCastNet accurately forecasts high-resolution, fast-ti

speed. precipitation, and atmospheric water vapor. It has important implications for planning wind
energy resources, predieting extreme weather events such as tropical cyclones, extra-tropical cyclones,
and atmospheric rivers. FourCastNet maiches the forecasting accuracy of the ECMWF Integrated
Forecasting System (IFS), a state-of-the-art Numerical Weather Prediction (NWP) model, at short lead

times for large-scale variables, while outperforming IFS for small-scak v

ables, including precipita-

tion. FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster
than IFS. The speed of FourCastNet enables the creation of rapid and inexpensive large-ensemble
forecasts with thousands of 2 i
how data-driven deep learning models such as FourCastNet are a valuable addition to the meteorology
toolkit to aid and augment NWP models.
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Pangu-Weather: A 3D High-Resolution System
for Fast and Accurate Global Weather Forecast

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian®, Fellow, IEEE

Abstract—In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For
this purpose, we establish a data-driven environment by downloading 43 years of hourly global weather data from the 5th generation of
ECMWF reanalysis (ERAS) data and train a few deep neural networks with about 256 million parameters in total. The spatial resolution
of forecast is 0.25° x 0.25°, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an
Al-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuraey (latitude-weighted
RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one
hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer
(3DEST) architecture that formulates the height (pressure level) information into cubic data, and (i) applying a hierarchical temporal
aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for
short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of
downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble
forecast in real-time. Pangu-Weather not only ends the debate on whether Al-based methods can surpass conventional NWP methods,
but also reveals novel directions for improving deep learning weather forecast systems.

Index Terms—Numerical Weather Prediction, Deep Learnil

g, Medium-range Weather Forecast.

2x4x4
Patch
Embedding ¢

+

3D Earth-Specific Transformer

2x4x4
Patch
Recovery

Layer 1 Layer 4
Earth-Specific Blockx2 [=[™”| Earth-Specific Blockx2 i
f (8 X 360 X 181 X €) (8 x 360 x 181 X C) split
Upper-air Variables ; B 4 Upper-air Variables
(13 X 1440 x 721 X 5) : d"W"'S"'""”"g; ¢ up-samplin (13 X 1440 X 721 X 5)
v v ; :
———— Layer 2 Layer 3 e e )
| Earth-Specific Blockx6  [“T=®| Earth-Specific BlockX6 4x4 I
= patch (8 x 180 x 91 x 2() (8 x 180 x 91 x 2C) Patch
U Embeddin, Recovery | m iy
——— Encoder Decoder —

Surface Variables
(1440 x 721 x 4)

See: Kurth et al.

Surface Variables
(1440 x 721 X 4)

GraphcCast: Learning skillful medium-range
global weather forecasting

Remi Lam"!, Alvaro Sanchez-Gonzalez"!, Matthew Willson™!, Peter Wirnsberger".!, Meire Fortunato™!,
Alexander Pritzel !, Suman Ravuri!, Timo Ewalds’, Ferran Alet!, Zach Eaton-Rosen’, Weihua Hu',
Alexander Merose?, Stephan Hoyer2, George Holland?, Jacklynn Stott!, Oriol Vinyals!, Shakir Mohamed!
and Peter Battaglia'

*equal contribution, DeepMind, 2Google

We introduce a machine-learning (ML)-based weather simulator—called “GraphCast”—which outper-
forms the most accurate deterministic operational medium-range weather forecasting system in the
‘world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph
neural networks and a novel high-resolution multi-scale mesh representation, which we trained on his-
torical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)’s ERAS
reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and
six atmospheric variables, each at 37 vertical pressure levels, on a 0.25° latitude-longitude grid, which
corresponds to roughly 25x 25 kilometer resolution at the equator. Our results show GraphCast is more
accurate than ECMWF's deterministic operational forecasting system, HRES, on 90.0% of the 2760 vari-
able and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous
ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate
a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike tradi-
tional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher
quality, and more recent data, the skill of the forecasts can improve. Together these results represent
a key step forward in complementing and improving weather modeling with ML, open new opportuni-
ties for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical
sciences.

Keywords: Weather forecasting, ECMWE, ERA5, HRES, learning simulation, graph neural networks

a) Input weather state

b) Predicting the next state ¢) Rolling out a forecast

(2022), Keisler (2022), Pathak et al. (2022), Bi et al. (2022), Lam et al. (2022)



Analogy: Climate Model Hierarchies connect our

fundamental understanding with model prediction
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ldea: Promoting model hierarchies for ML models

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG

PILE OF LINEAR ALGEBRA, THEN COLLECT
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Given a climate process for which we have reliable data,
how can we systematically generate hierarchy of ML models?

THIS 15 YOUR MACHINE LEARNING SYSTET?
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/0 atmospheric
edictions

. Si «, Radlatlve
Transfer Emulatlon

Appllcatlons 1) Data drlven model development 2) Process understandlng
Methods: 1) Sequential Feature Selection, 2) Pareto Optimality



Movie from: Monsoon IV (Olbinski, 2017)




1. Improving Cloud Cover Parameterization in
ICON (Unified German NWP/climate model)

Motivation: Reduce cloud-related biases for climate projections
Data: 2.5km-res, 59-layer, global storm-resolving ICON runs (DYAMOND)
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Source: Grundner, Beucler et al. (2022), Giorgetta et al. (2022), Stevens et al. (2019)



Neural Nets have root-mean squared errors < 7%

Neural Network
Estimate

Reference
(Coarse-Grained
High-resolution
simulation)




Q Analogy: Work in a well-defined (Complexity,Performance) plane Q
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Improving Cloud Cover Parameterization using High-Res. ICON Data
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Improving Cloud Cover Parameterization using High-Res. ICON Data
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Improving Cloud Cover Parameterization using High-Res. ICON Data
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How to jointly minimize error and complexity?
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Sequential Feature Selection helps build a hierarchy of ML models
by progressively increasing the number of inputs
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% Tool 1: Sequential Feature Selection helps build a hierarchy of ML {}f
models by progressively increasing the number of inputs

Elbow = Compromise between complexity and performance
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Simple linear models are more appropriate than
Sundqgvist scheme to parameterize cloud fraction
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§< Tool 2: Increasing model complexity draws a Pareto frontier

Crrac = 33RH — 21T + 5G; — 5288 4 68
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Application 1: Data-Driven Model Development
Goal = Pareto optimality
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Mean-Squared Error (%)?
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Application 2: Process Understanding
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Why does increased complexity improve performance?
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Concentration of all water species & temperature
help accurately predict cloud fraction
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Condensates nonlinearly related to cloud fraction

_ q9RT = |k~  rORH
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Nonlinearities are crucial, even for relative humidity...
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...explaining the success of a simple exponential scheme for cloud cover
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And guiding the discovery of new equations for cloud cover

.
*
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See: Cranmer (2020), Cranmer et al. (2020)
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And guiding the discovery of new equations for cloud cover
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Example of transparent machine learning

f(RH,T,0,RH,q.,q;) = 1,(RH,T) + I,(0,RH) + I(q¢;, q.)
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: L(RH,T) = a1 RH? + (a2RH — a3)T? — a4RHT + asRH + agT — a7
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Application 2: Process Understanding
Pareto frontier hierarchically unveils system complexity
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2. Accelerating Shortwave Radiative Transfer for
NWP by emulating high-fidelity rad. transfer model

Source: Lagerquist et al. (2021)



2. Accelerating Shortwave Radiative Transfer for
NWP by emulating high-fidelity rad. transfer model

Motivation: Even correlated-k models (RRTM) are too slow for NWP
Data: Input derived from the Rapid Refresh model, then fed to RRTM

Source: Lagerquist et al. (2021), Krasnopolsky et al. (2010, 2020), Benjamin et al. (2016), Mlawer et al. (1997)



2. Accelerating Shortwave Radiative Transfer for
NWP by emulating high-fidelity rad. transfer model

Motivation: Even correlated-k models (RRTM) are too slow for NWP
Data: Input derived from the Rapid Refresh model, then fed to RRTM
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One-stream & quadratic models are Pareto-optimal
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Parsimony Principle: “Models with less parameters tend
to generalize better to out-of-distribution samples”
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Tip: Explore various definitions of performance & complexity

1.14 K/d 0.68 K/d 2.22 K/d 0.20 K/d 0.14 K/d

Linear Dense CNN UNet Unet++

Data Source: GFS (not RAP), See: AMS Talk 1A.5 by Ryan Lagerquist et al., Ukkonen (2022)




We can systematically build hierarchies of

ML models to better understand their added value
Applications:

1. Guid
com

e data-driven model development by jointly minimizing error and
olexity in a well-defined plane, indicating “Pareto-optimal” models

2. Further process understanding by hierarchically unveiling system
complexity (key features/nonlinearity/space-time connectivity) by
comparing models & investigating error statistics along Pareto frontier

3. Anticipate generalization to out-of-distribution (parsimony principle)

Advantages:

* Cleanly comparing existing schemes to powerful data-driven models
* Developing data-driven models directly applicable to NWP/climate
* Improving trustworthiness of ML models via hierarchical understanding*
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