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Abstract
The effects of anthropogenic aerosol, solid or liquid particles suspended in the air, are the biggest contributor to
uncertainty in current climate perturbations. Heavy industry sites, such as coal power plants and steel manufactur-
ers, large sources of greenhouse gases, also emit large amounts of aerosol in a small area. This makes them ideal
places to study aerosol interactions with radiation and clouds. However, existing data sets of heavy industry loca-
tions are either not public, or suffer from reporting gaps. Here, we develop a supervised deep learning algorithm
to detect unreported industry sites in high-resolution satellite data, using the existing data sets for training. For the
pipeline to be viable at global scale, we employ a two-step approach. The first step uses 10 m resolution data, which
is scanned for potential industry sites, before using 1.2 m resolution images to confirm or reject detections. On held
out test data, the models perform well, with the lower resolution one reaching up to 94% accuracy. Deployed to
a large test region, the first stage model yields many false positive detections. The second stage, higher resolution
model shows promising results at filtering these out, while keeping the true positives, improving the precision to
42% overall, so that human review becomes feasible. In the deployment area, we find five new heavy industry sites
which were not in the training data. This demonstrates that the approach can be used to complement existing data
sets of heavy industry sites.

Impact Statement
Aerosols from industrial air pollution play an important role in both public health and climate. Complete
and freely accessible data on large aerosol sources are of great interest, but not currently available. Here,
we present a scoping study to fill the gaps in existing data sets by automatically detecting heavy industry in
satellite data. This approach can be rolled out globally to complete the available data.

1. Climate change and the need for pollution source databases
Anthropogenic aerosol, such as black carbon or sulfate, plays an important role for the earth’s energy
budget. Aerosol can interact directly with solar radiation by absorbing or scattering light. More
subtly, it can change the properties of clouds to make them more reflective by providing additional
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condensation nuclei and increasing the number of cloud droplets, which in turn sets off a series of
further adjustments. Together, aerosol-induced changes in cloud properties are the largest source of
uncertainty in current estimates of man-made climate forcing [Masson-Delmotte et al., 2021]. This is
mainly because the different effects are difficult to untangle and experiments are infeasible in nature
on the large scales required.

Research has therefore relied heavily on so-called opportunistic experiments [Christensen et al.,
2021], where an aerosol source is known and localized, such that polluted and unpolluted clouds can be
directly compared. Examples of such sources include volcanoes [Malavelle et al., 2017], ships [Coak-
ley and Walsh, 2002], and heavy industry [Toll et al., 2019]. In the past, studies of these sources have
been limited to some hundreds of ‘events’, such as a ship or heavy industry site producing a visible
change in clouds. Research is ongoing to enlarge such data sets, e.g. by automatically detecting such
cloud changes caused by ships with machine learning [Watson-Parris et al., 2022]. Another approach
is to use more information about the sources themselves: Manshausen et al. [2022] use millions of
ship paths and reconstruct where their pollution has changed cloud properties, uncovering previously
undetected changes in cloud water. A similar approach seems promising for large industrial sites.

However, existing data such as that collected by the International Energy Agency or by private
companies is not publicly available. The databases that are available such as the EDGAR data do not
include point sources outside Europe and North America [Janssens-Maenhout et al., 2015]. Here, we
build on two openly accessible databases of point sources to fill in such gaps (see Data).

We also note that there is a growing interest in independent estimates of greenhouse gas emis-
sions using satellite observations, and therefore in heavy industry sites as large emitters. Among
others, www.climatetrace.org and its partners are accounting for global emissions. Recently, large
point sources of methane have also been discovered from satellite imagery [Lauvaux et al., 2022].

This project is informed by recent advances in detecting large industrial sites and land cover classifi-
cation: Sheng et al. [2020] use a deep neural network approach to identify oil refineries in the United
States. However, their work uses satellite data at relatively high resolution of 2.5 m, which requires
handling large amounts of data for continental-scale detection. For land cover classification, Sumbul
et al. [2021] propose ‘BigEarthNet’, a deep neural network which classifies 10-60 m resolution Sen-
tinel2 images into 19 land use classes. However, their ‘industrial and commercial units’-class is the
one that performs second to worst. If the locations of power plants are known, Mommert et al. [2021]
have shown that ResNet architectures are skillful at identifying their type, e.g. distinguishing nuclear,
gas, and coal. With known locations, Hanna et al. [2021] propose a method to then estimate power
plant CO2 emissions.

Our work addresses the gap of detecting heavy industry in Sentinel2 data, with the aim of developing
a method that can, in principle, be deployed globally. To this end, we propose a two-step approach
in which we first perform classification on 10 m resolution data and then additional filtering of false
positives at 1.2 m resolution, using Bing Maps [Microsoft Corporation, 2023].

2. Data
This work aims to extend some of the existing and freely available data sets of heavy industry. Namely,
we base the project on the location data from Global Energy Monitor [2022a,b] and from McCarten
et al. [2021] for coal and steel plants worldwide. These data sets include over 4000 samples of heavy
industry sites. To include non-industry sites, we add the same number of random land cover patches by
choosing the patch at a fixed distance of 0.1° longitude to the east of each industry site center.

www.climatetrace.org
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Figure 1. Some example visualizations the RGB channels of the Sentinel2 patches in the data set.
For a human, characteristic features of steel plants are e.g. the dark surface together with industrial
structures like in the top first panel. For coal plants, cooling towers are common, note the bright
crescent-shape in the top second panel, bottom right corner. Labels show truth (tr.) and prediction
(pred.) of our best model..

We download Sentinel2 data for the 10 m resolution bands 02, 03, 04, and 08 (i.e. RGB and
near infrared), in patches of 240x240 pixels centered around the locations from the above databases.
Querying the database for cloud-free Sentinel2 overpasses, we use the date range from March to
October 2021 and take the output with the lowest cloud cover in the scene and in the patch. The data is
normalized to have zero mean and unit standard deviation in each channel. Leaving out the NIR band
slightly reduces the performance during training, so all models include it.

As the Sentinel cloud mask is not completely accurate, we iterate over the data set twice, train-
ing only on half the data in each case. The models obtained that way are used to predict the labels of
the held-out data. We review the most mismatched prediction/ground truth pairs by eye, which in some
cases are cloud-covered, or do not show any industry (errors in the site data). This leaves a data set of
7,829 patches, with 28% of coal, 22% of steel, and 50% of non-industry samples. For training, we use
80% of the data with 10% held out for testing and 10% for validation. We employ data augmentation
using random rotation, random crop, and random flip. We find that we obtain the best results with a
center crop to 140x140 pixels and then a random crop to the target 120x120 pixel patches (the same
size as those used by [Sumbul et al., 2021]). This cropping is in order to vary where the industry plant
is with respect to the scene. It should always be at the center of the 240x240 patch, then center and
random crops allow it to be offset from the center in the final 120x120 training patch. Each patch is
assigned to one of three classes coal, steel, other/no industry. Examples of what this data looks like in
the three visible channels can be seen in Figure 1.

For the second step, we download Bing Maps [Microsoft Corporation, 2023] aerial RGB imagery in
the same locations as discussed above, and filter in the same way. The resolution here is 1.2 m, and we
limit the image size to 1400 pixels, giving an on-the-ground size of just below 1200m, the same as the
size of the Sentinel2 images. Splitting and augmentation are as above.
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Table 1. Performance evaluation of the best model (ResNet50v2) on the held out test data for both the
lower and higher resolution cases. Overall accuracy of the top-1 prediction is 0.94 for the lower, 0.77 for
the higher resolution case.

Lower res Higher res
Category Precision Recall F1-score Precision Recall F1-score

coal 0.96 0.95 0.95 0.72 0.82 0.76
steel 0.88 0.86 0.87 0.84 0.53 0.65
other 0.95 0.97 0.96 0.85 0.93 0.89

weight. avg. 0.94 0.94 0.94 0.76 0.77 0.76

3. Models and Training
For step one, following [Sumbul et al., 2021], we initially try a number of CNN architectures, trained
with categorical crossentropy loss. These are: ResNet50, VGG16, EfficientNet, InceptionNet, and
ResNet50v2. For each of the architectures, we add a dense layer of three neurons at the end of the
network for the three classes. We find that among the models, ResNet50 (the original, and v2, [He
et al., 2016]) converge the quickest. Compared to ResNet50, ResNet50v2 reaches slightly higher
categorical accuracy. We train ResNet50v2 for up to 200 epochs, using early stopping after 50 epochs
of no decrease in validation loss. We start training with a learning rate of 10−3 and decay with 𝑒−0.03

each epoch after 30 epochs.

For step two on high-resolution data, we train the same ResNet50v2 architecture, using early stopping
and a decaying learning rate as above. In both cases, training from scratch performs better than using
pre-trained weights from imagenet [Jia Deng et al., 2009].

4. Results
4.1. Step 1: Lower resolution
The Sentinel2 model performs well on the held out data, with precision values of up to 0.96 for coal
plants. Table 1 shows performance for all classes in terms of precision, recall, and F1-score. It seems
that generally steel plants are harder to detect (lower recall), as they are often not as visually distinctive
as coal plants. Figure 1 shows a random selection of predictions on the test data together with the
ground truth. Figure A 3 shows a selection of patches that were misclassified by the model.

4.2. Step 2: Higher resolution
In the higher resolution case, the model does not perform as well on the test data, as shown in Table 1.
This is surprising given the larger level of detail in the data. The model performs worst on steel plants,
with the confusion matrix, shown in Table 2 indicating that it mistakes many of them for either coal
plants or no-industry sites – of the 23% steel plants, just over half are correctly identified (compare
also the recall of 53% in Table 1). The overall lower skill may be due to insufficient training samples to
learn high resolution properties, different hyperparameters being needed for the high resolution case, or
the model making more cautious predictions with a higher spread of probabilities. A promising result
is that the model has high recall on the ‘other’ category, which is crucial for using it as a second stage
filter on the positive predictions of the low resolution stage.
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Table 2. High resolution model confusion matrix, normalised by the number of samples. Each line shows
the fraction of samples belonging to a category that were predicted as each of the categories, i.e. the first
line means out of all patches, 20% are coal and were identified as coal, 2% are coal and were identified
as steel, 3% are coal and were identified as other. This is evaluated on the held out test data.

Prediction
Truth coal steel other

coal 0.20 0.02 0.03
steel 0.06 0.12 0.05
other 0.03 0.01 0.48

4.3. Large scale deployment
In a deployment test, we deploy our first stage model to a 4°x4° area centered around (21° N, 82° E)
in north-eastern India, focusing on coal plants. Checking the results manually, we find that the model
finds some coal plants that are present in the region, but also returns many false positives even at high
probability thresholds. This is most likely due to the more imbalanced real world data, with a large
fraction of no-industry tiles. A similar behaviour was also observed by Sheng et al. [2020].

Figure A 4 shows some example positive predictions for coal. For some false positives, we can
guess why the model confuses them for coal plants. For instance, they are often situated near rivers (a),
produce small clouds (b) near the cooling towers, show built structures that may look similar to urban
fabric (c), or are close to open air mines (d) or coal piles. The figure also shows two true positives (e),
with the characteristic dark surface, industrial structures, cooling tower, and river (f).

0 500 1000

0

500

1000

in training, prob.:0.48

0 500 1000

0

500

1000

in training, prob.:0.82

0 500 1000

0

500

1000

in training, prob.:0.21

0 500 1000

0

500

1000

in training, prob.:0.12

0 500 1000

0

500

1000

new, prob.:0.22; 19.03N, 79.35E

0 500 1000

0

500

1000

new, prob.:0.22; 21.68N, 82.09E

0 500 1000

0

500

1000

new, prob.:0.21; 21.6N, 82.04E

0 500 1000

0

500

1000

new, prob.:0.36; 21.63N, 82.11E

Figure 2. RGB images of the second stage higher resolution predictions in the deployment region.
Scenes that the first stage classed as >50% probability of coal plant are downloaded at higher resolu-
tion from Bing Maps and fed into the model. The second stage detects 23 out of 24 coal plants that were
present in the training set (top row, labelled ‘in training’, and with probability output). It also detects
five ‘new’ coal plants not in the data set from Global Energy Monitor, four of which are shown in the
bottom row with their respective locations..
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More quantitatively, of the 51 coal power plants in the study area which are present in the training data
set, the model correctly identifies 24 (probability of >50% for coal). This seems low (recall of 0.47)
given the recall of 0.95 on the testing data (cf. Table 1). This may be linked to poorer data quality in the
deployment set, with sites off-centered, cut in half, or covered by cloud. The model makes 890 positive
predictions in total, most of which are false positives (giving a precision of only 0.03, much lower than
on the testing data, because of the imbalanced deployment data with many more ‘other’ patches). This
is where the second stage, higher resolution model comes in: We download the high resolution Bing
Maps scenes in the locations of the 890 positives from the first-stage and make predictions on them
with the second stage model. Even though the accuracy of the high resolution model is lower on the
test data, it performs well at this confirmation/rejection task: Setting a threshold of 10% probability
for coal confirms 23 out of the 24 known coal plants (recall of 0.96), while reducing the 890 potential
positives to 55 (precision of 0.42).

Reviewing the remaining positives, we find five additional coal plants, which were not present
in the training, validation, or test set. Four of these, together with four of the 23 that were in the data
sets, are shown in Figure 2. The five detected sites are cement production facilities (confirmed by an
internet search of the location), which form a complex with coal power plants for their large energy
consumption. (The fifth site, not shown in the figure is at 21.37N, 83.61E.) Two additional metal pro-
cessing sites are detected which likely also use coal power. These new sites were probably identified
from the architectural or surface elements that are there because they are coal powered, such as coal
piles, smokestacks, and polluted, dark surfaces. The above values for precision and recall after each
step were given without taking into account the new sites, and are therefore a conservative estimate of
the actual values.

This demonstrates that our approach can be used to fill in gaps in existing data sets. At the same time
it raises the question of how to treat complex industrial facilities which combine coal power with
manufacturing of products like steel or cement.

5. Discussion and future work
The above results depend strongly on the choice of threshold values for detection in both stages of
the algorithm. To illustrate the problem, true and false positive rates of the first and second stage coal
plant detections are shown in Figure A 5. In the first stage, the priority is a low false positive rate, as
we want to download as little high-resolution data as possible for the second stage. In order not to miss
too many true positives, we chose a threshold of 50% here.

For the second stage, the priority is a high true positive rate, so that industry sites present in the
high-resolution data are not missed. This is why we chose a (relatively low) threshold of 10% in
this study, which still allows to filter out many false positives, as shown by the steep decline in false
positives in Figure A 5. Ultimately, these thresholds should be chosen depending on computational
resources (imposing a lower limit on the first stage threshold, as a low threshold will mean many posi-
tives that need to be verified in the second stage), as well as the resources for human review (imposing
a lower limit on the second stage threshold, as a low threshold will mean many positives that need to
be verified by eye).

We would like to further improve step one and lower its false positive rate. For this we propose:
(i) Deploying on two or three Sentinel2 overpass dates for each tile, which would presumably eliminate
the ‘small cloud’ false positives. (ii) Using human-in-the-loop learning, i.e. retraining the model with
the correctly labeled false positives from the deployment stage after human review, or just increasing
the number of non-industry cases in the training data. (iii) Re-running on shifted tiles to exclude the
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case where a site is cut in half and therefore not recognized.

This last point is connected to the cropping hyperparamter choices: We start with 240x240 pixel
scenes, then center crop to 140x140, and then random crop to 120x120. While the initial and final size
are modelling choices, the center crop size should be seen as a hyperparameter. 140x140 pixels is the
best choice for training and then testing on the data. It balances variation in where the site is in the final
scene with ensuring enough of it is present for the model to learn important features. However, for the
deployment, a less conservative choice, i.e. a larger value than 140, which will train the network with
more off-center scenes, could do better on the random positions that it will be deployed to. This could
potentially improve the model’s false negative rate.

To improve step two, in order to achieve accuracy comparable to the low-resolution first step,
independent hyperparameter tuning seems promising. Ultimately, the goal is to roll out this approach
globally, and to fill the gaps in existing data sets. To do this, careful evaluation of detection thresholds
at both stages is needed, balancing the threshold’s effect on false positive and false negative detections.

6. Conclusions
There is a need for publicly available databases of locations of heavy industry, which act as large
point sources of aerosol and greenhouse gas pollution. We show that heavy industry complexes can be
detected in globally available 10 m-resolution satellite data. ResNet architectures are particularly well
adapted to this task and reach high accuracy for both steel and coal plants. However, this approach has
many false positive detections at deployment. This can be remedied by a second step, which makes
use of the available high-resolution data, but only in the locations where detection seems likely based
on low-resolution data. Our approach combines the advantages of being not too data intensive, not
yielding too many false positives (high precision), and requiring minimal human review of detections.
Furthermore, the method succeeds at finding new heavy industry sites not present in the existing data
sets it was trained on. Finally, these efforts may contribute to the larger effort of independently and
bottom-up quantifying not only air pollution, but also greenhouse gas emissions.
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Figure A 3. Wrong predictions of the lower resolution model on the test data set. Labels show truth,
prediction, and probability. The model struggles with coal and steel plants that are not isolated but in
an industrial or urban area (top first and bottom last), geological formations it mistakes for steel plants
(top second, bottom first), as well as distinguishing steel and coal (top last, bottom second and third).
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Figure A 4. Positives for coal detection in the deployment data at low resolution. Transparent red
patches indicate where the model gives high probability of coal plant detection. However, only the red
patches in e) are true positives (the top one magnified in f shows a characteristic cooling tower).
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Figure A 5. Dependence of true and false positive rates on thresholds for detection of coal plants in
the first stage (left) and the second stage (right).


	Climate change and the need for pollution source databases
	Data
	Models and Training
	Results
	Step 1: Lower resolution
	Step 2: Higher resolution
	Large scale deployment

	Discussion and future work
	Conclusions
	Appendix

