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Machine learning (ML) has recently been demonstrated as a viable approach to achieving one or both
of higher computational performance and higher predictive performance in climate models. One notable
use is for subgrid models (so-called “parameterizations”), where a neural network is trained against
observational data or against a higher resolution dynamical model. In an era where scaling of hardware
performance has slowed, ML models provide a way to push through performance barriers [2]. This
approach typically then leads to a technical software engineering challenge of language interoperation:
Python is the most popular language for building ML models due to libraries just as TensorFlow, PyTorch,
and scikit-learn, whilst Fortran remains the language du jour for GCMs and other intermediate models.
Implementations of Fortran and Python have different data models and so aligning the two languages
requires some care.

Interoperability libraries such as forpy [5] can be used where the data structures of Python can be
accessed from Fortran. The forpy package establishes native Python types that are accessible from
Fortran. The standard forpy workflow involves importing relevant Python modules to Fortran and
initialising objects (e.g, a PyTorch neural network model class) for inference. Fortran arrays are then
passed in and out of the forpy interface, with some necessary restructuring.

In this work, we ask, is the forpy method the best approach? We present approaches for TensorFlow
and PyTorch that avoid the use of forpy and show that higher performance can be achieved via more
direct couplings between machine learning libraries and Fortran. Each approach has its unique character-
istics however, based on the target library, although they share the common goal of overcoming overhead
in more general coupling approaches.

We demonstrate our technique in the context of modelling atmospheric gravity waves. Atmospheric
gravity waves are forced by disturbances in a stratified flow, such as orography (mountains), convection,
and fronts. They propagate away from the source, primarily upwards, until wave breaking occurs, at
which point they deposit momentum. This transfer of momentum from the lower to middle and upper
atmosphere is one of the main drivers of middle atmosphere circulation. However, because gravity waves
span a wide range of spatial scales, from tens to thousands of km, a large portion of their spectrum is
not resolved explicitly by the numerical scheme of a climate model, which are limited to resolutions of e.g
100-300 km. Instead, climate models represent subgrid-scale gravity waves through parameterizations. A
test for the effectiveness of gravity wave parameterizations (GWP) is the replication of the Quasi-Biennial
Oscillation (QBO). The QBO is the main mode of variability in the equatorial stratosphere [3], featuring
alternating westerly and easterly winds (between 5-100 hPa) that propagate downwards with time. The
QBO is fairly consistent across the observational record with a period of ∼28 months. In the absence
of gravity wave parameterizations, climate models have not produced a spontaneous QBO. Recently,
Espinosa et al. [4] reproduced the QBO in an atmospheric model using a data-driven approach instead
of the well-known GWP scheme of Alexander and Dunkerton [1]. The implementation leverages forpy
and TensorFlow; we use this as a starting point for evaluating our techniques.

Fortran to TensorFlow coupling TensorFlow’s core code is written in C++. There are three official
APIs: C++, Python, and a C API. To interface directly to Fortran we use the C API, taking advantage
of modern Fortran’s iso_c_binding intrinsic module. We built the fortran-tf-lib library, a Fortran
wrapper around the C API which performs some of the necessary translations between Fortran and C,
such as string handling. It is not expected that users will build or train models directly from Fortran, so
our library exposes only the functions necessary to load and infer a previously trained and saved model.

The TensorFlow C API is designed with the expectation that clients can construct and parse Protocol
Buffers (protobufs) (Google’s interchange format). Most of the time it is possible to use the API to
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generate and consume the appropriate buffers. However, there are two occasions when the client must
parse buffers within the model: (1) loading the model and (2) forming the linkage between tensors and
the model’s inputs. There are no functions within the API to assist the user however: the user must
either write extra protobuf parsing code, or have pre-knowledge of the model’s parameters.

To overcome this hurdle and aid coupling, we developed process model, a tool that examines Tensor-
Flow SavedModel representations of an ML network, extracts the necessary parameters from the model,
and code-generates a Fortran module that can load and run the models using the Fortran TensorFlow
library. The tool uses the TensorFlow Python API to extract the tag sets present in the models, which
are needed to load models, and the GraphOperation names and indices, which are needed for inference.
The Fortran module provides procedures to load the models once, into module scope variables. There are
helper routines to associate Fortran arrays with appropriately shaped and typed TensorFlow tensors. The
inference routines have the GraphOperation names and indices hard-coded. Finally, a de-initialisation
routine releases memory held by the TensorFlow library.

The code produced is well-commented and documented, as it is intended to be flexible and easy to
modify to fit the user’s needs. Using the generated code, the user will make one procedure call each to
load then infer a model with one more call per tensor association. This will usually be far less code than
the forpy approach, and without the inherent issues of interfacing Python and Fortran.

In the GWP, early tests show a speedup of around 3× when comparing only the time spent in the
forpy coupling code and model evaluation to time spent in the TensorFlow direct coupling code. Since
the model evaluation will be identical once execution reaches the TensorFlow C++ framework we can
say this speedup correlates to a performance increase when using the direct coupling. These early results
may be affected by some non-optimal decisions in the forpy coupling code.

Fortran to PyTorch coupling PyTorch is another popular library for building ML models. PyTorch
is commonly written and run using Python, but models can also be written in TorchScript, a statically-
typed subset of Python. PyTorch provides methods to convert Python models to TorchScript by tracing
(tracking tensor operations) or scripting (conversion of Python code into TorchScript). Once a model has
been converted to TorchScript it may be compiled and interpreted using a Just-In-Time (JIT) compiler.

Like TensorFlow, PyTorch provides a C++ API capable of interfacing and calling TorchScript code.
We adopt a similar approach to that for TensorFlow above, interfacing between TorchScript and Fortran
using this API. We built the fortran-pytorch-lib library, a Fortran wrapper around the C++ API
(via an intermediate C wrapper) using the modern Fortran iso_c_binding intrinsic module. This library
performs the required translations for loading and inferring previously trained and saved TorchScript
models. Thus we avoid direct use of Python and leverage the significant advantages of shared memory
between Fortran and the TorchScript model.

The fortran-pytorch-lib library is well-commented and documented, with examples to guide users
with a variety of possible use-cases. Early tests also indicate a speedup when compared to forpy coupling
code, with comparisons between the PyTorch and TensorFlow coupling routines in progress.

Next steps Our next steps are to show benchmarking results of running the GWP using the forpy

and direct coupling methods, coupling to TensorFlow and PyTorch models. The models will have the
same internal structure and parameters. We will discuss strategies for processing the data as it passes
between the GWP and the ML framework, such as when to reshape or normalise the data.
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