Near-Term Forecasting of Water Reservoir Storage Capacities Using Long Short-Term Memory

Eric Rohli

Trabus Technologies

Data Scientist ericr@trabus.com

Nick Woolsey

Data Scientist nickw@trabus.com

David Sathiaraj

Director, Data Science davids@trabus.com

OUTLINE

- Motivation
- Methodology
- Results and Discussion
- Roadmap
- Acknowledgements

MOTIVATION

Source: Mercury News (San Jose, CA)

Source: Washington Post

Source: Times of India

Inside Climate News

Politics & Policy

Lake Powell Drops to a New Record Low as Feds Scramble to Prop it Up

The wet winter, cutbacks in releases from Glen Canyon Dam and proposals from states to reduce demand aren't enough to stem the reservoir's decline, leading some activists to advise phasing it out.

By Alex Hager, KUNC February 17, 2023

Source: Inside Climate News

Source: NBC News

MOTIVATION

- Question: Since surface water won't suddenly appear, how can we manage existing water resources better?
- Existing hydrological models can accurately model fluid flow with extreme detail, but:
 - Require extensive computational resources to use their full capabilities
 - Are not suited to rapid prototyping and simulation of various scenarios
- How do rain events impact reservoir levels?
- Can similar results be obtained using numerical models?
 - Then, can we use these models for rapid simulation?

TRABUS TECHNOLOGIES

- Small business headquartered in San Diego, CA
- AI/ML/data science experience in hydrological, climate, maritime transport and wireless domains
- Provides data analytics services and IT for the Southern Regional Climate Center
 - Partnered with Texas A&M University
 - 1 of 6 National RCCs
 - ACIS Applied Climate Information System

RippleGo: An AI-based Voyage Planner for Inland Water Transportation

METHODOLOGY – SITE SELECTION

- 17 reservoirs located in Texas, USA
 - Period of record for reservoir elevation or storage: at least 1 Jan. 2010 – 31 Dec. 2022
 - Sites continually report during study period
 - Data available through USGS Water Data for the Nation API
 - Elevation-area-capacity curve information
 available through Texas Water Board
- Spans 9 of 10 climate divisions in Texas, 16 different watersheds

METHODOLOGY – PREPROCESSING

- 14 days of reservoir data augmented with gridded climate data Parameter-elevation Regressions on Independent Slopes Model (PRISM)
- Data divided sequentially into model training, validation, and test sets
 - Sequential division preserves time series nature of data
 - Sets chosen to capture a wide range of long-term weather conditions
- Separate datasets/models developed for each reservoir

Model Training						Validation			Testing		
2010 2011	2012 2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	

METHODOLOGY – MODEL CONSTRUCTION

RESULT – ALL RESERVOIRS

Reservoir	7-day MAPE (%)	7-day RMSE (ac-ft)	14-day MAPE (%)	14-day RMSE (ac-ft)	
Meredith	0.32	786	0.54	1339	
Weatherford	0.95	203	2.04	353	
Joe Pool	1.01	3331	1.83	5883	
Martin	0.84	1146	1.40	1731	
Ray Hubbard	0.81	4985	1.29	7186	
Conroe	0.75	5435	1.09	7073	
Georgetown	1.55	535	3.16	955	
White River	1.85	263	3.14	377	
J.B. Thomas	2.10	3975	3.84	6380	
Corpus Christi	1.92	8720	3.17	13876	
Texana	1.37	3232	2.31	4797	
Limestone	1.36	3340	2.11	4961	
Twin Buttes	1.18	1572	2.33	2519	
Millers Creek	0.82	305	1.49	458	
Crook	1.52	214	2.07	261	
Canyon	0.42	2402	0.86	4020	
Leon	0.97	531	1.64	699	

- MAPE = Mean Absolute Percent Error
- RMSE = Root Mean Squared Error
 - Lower = Better
- Best: Lake Meredith, Lake Canyon
- Worst: Lake J.B. Thomas, Lake Corpus Christi
- All 14-day results within 4% error. This suggests generalizing to any reservoir in study area.

RESULTS – DEEPER DIVE

14-day

ROADMAP

APPLICATIONS

Help reservoir managers better plan for extreme climate hazards

Better understand reservoir responses to rainfall events

ACKNOWLEDGEMENTS and CONTACT INFORMATION

- Fellow Trabus employees: Andres Tec, Andrew Smith, Andy Van Pelt, Cathy Hsieh
- RCC Program and Applied Climate Information System (<u>www.rcc-acis.org</u>)
- Trabus Technologies (<u>www.trabus.com</u>)

Eric Rohli Data Scientist ericr@trabus.com

Nick Woolsey

Data Scientist nickw@trabus.com

David Sathiaraj

Director, Data Science davids@trabus.com