

Quantifying causal teleconnections to drought and fire risks in Indonesian Borneo

Timothy Lam^{*}, Jennifer Catto, Anna Harper, Rosa Barciela, Peter Challenor, Alberto Arribas

<u>t.lam@exeter.ac.uk</u>

Motivation and Objectives

- Identify large-scale ocean-atmosphere causal links leading to droughts and fires
- Evaluate the likelihood of unprecedented drought and fire risks
- Unfold possible changes of drought and fire risks and their drivers under a warming climate
- → Develop climate risk assessment and resilience building strategies for droughts and peatland fires in Central Kalimantan Province, Indonesian Borneo

Source of pictures: The Guardian (2015)

Identify causal links leading to droughts and fires

Knowledge-guided Casual Inference (Kretschmer et al. 2021, BAMS)

Identify causal links leading to droughts and fires

Identify causal links leading to droughts and fires

Knowledge-guided Casual Inference (Kretschmer et al. 2021, BAMS)

JJA Borneo Drought = 0.681* (JJA ENSO) + c_7 MAM Zonal Wind = 0.565* (MAM SST) + c_2 JJA Borneo Drought = 0.548* (MAM Zonal Wind) + c_3 JJA Borneo Drought = 0.209 (MAM SST) + c_4

• Based on standardised and detrended CHIRPS precipitation, HadISST, and ERA5 wind data

Evaluate present and future drought and fire risks

Risk at present

Risk in the future

Likelihood of unprecedented drought and fire risks

- Based on GloSea6 seasonal hindcast ensemble runs from 1993 2016
- Under an El Niño, there is about a 50% chance that Fire Weather Index (FWI) exceeds that in 2015, which is approximately 2 times and 25 times greater than under neutral ENSO and La Niña conditions, respectively.
- FWI during historical fires may still be exceeded under neutral ENSO and La Niña conditions, associated with Indian Ocean Dipole (IOD), East Asian Summer Monsoon, or extratropical drivers.

Future drought and fire risks

Maximum Consecutive Dry Days

• Under SSP585 scenario, maximum number of consecutive dry days will increase significantly (p = 0.016) in the far future (2061 – 2100) compared with historical baseline (1981 – 2014).

Future drivers of drought and fire risks

ENSO vs MCDD

• There is no clear trend of relationship between ENSO and Borneo drought towards the future.

Future drivers of drought and fire risks

0 ACCESS-CM CanESM5 FGOALS-f3-L GFDL-CM4 4 Ö MRI-ESM2-0 NESM3 Coefficient TaiESM1 UKESM1-0-LL 0.0 CNRM-CM6-1 CNRM-ESM2-1 MIROC6 ACCESS-ESM1-5 0.5 FGOALS-g3 HadGEM3-GC31-LL INM-CM4-8 INM-CM5-0 -10 IPSL-CM6A-LR NorESM2-LM NorESM2-MM Historical Near future SSP2 Far future SSP2 Near future SSP5 Far future SSP5 CMCC-CM2-SR5 CMCC-ESM2 EC-Earth3 KIOST-ESM Experiment Mean

Pacific SST vs MCDD

• Under SSP5, Pacific SST as a driver of maximum number of consecutive dry days will strengthen significantly (p = 0.026) in the far future (2061 – 2100) compared with historical baseline (1981 – 2014).

Conclusions

Using a causal framework to quantify teleconnections, we find that:

- Strong associations are observed between boreal summer droughts in Indonesian Borneo, El Niño conditions, and elevated SSTs over eastern North Pacific in the preceding boreal spring.
- An El Niño event substantially elevates the risk of unprecedented fires, but they are still possible under other ENSO phases.
- Droughts in Indonesian Borneo may worsen in the future, which could be attributed to the strengthening of wind-evaporation-SST feedback as evidenced by enhanced relationship between Borneo drought and SST over eastern North Pacific in the preceding boreal spring.

